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Aims The aim of this study was to analyse the underlying mechanisms of left and right ventricular (LV and RV) functional
alterations during several days in high-altitude hypoxia.

...................................................................................................................................................................................................
Methods
and results

Resting evaluations of LV and RV function and mechanics were assessed by Speckle Tracking Echocardiography on
11 subjects at sea level (SLPRE), 3 ± 2 h after helicopter transport to high altitude (D0), at day 2 (D2), day 4 (D4)
and day 6 (D6) at 4350 m and 5 ± 2 h after return to sea level (SLPOST). Subjects experienced acute mountain sick-
ness (AMS) during the first days at 4350 m. LV systolic function, RV systolic and diastolic function, LV and RV
strains and LV synchrony were unchanged at high altitude. Peak twist was increased at D0, continued to increase
until D6 (SLPRE: 9.0 ± 5.1deg; D6: 13.0 ± 4.0deg, P < 0.05), but was normalized at SLPOST. Early filling decreased at
high altitude with a nadir at D2 (SLPRE: 78 ± 13 cm s-1; D2: 66 ± 11 cm s-1, P < 0.05). LV filling pressures index was
decreased at high altitude with the minimum value obtained at D2 and remained reduced at SLPOST. Untwisting, an
important factor of LV filling, was not decreased but was delayed at 4350 m.

...................................................................................................................................................................................................
Conclusions High-altitude exposure impaired LV diastolic function with the greatest effect observed at D2, concomitantly with

the occurrence of AMS. The LV early filling impairments resulted from an increased RV afterload, a decrease in LV
filling pressure and a delayed LV untwist. However, the increased LV twist probably acted as a compensatory
mechanism to maintain cardiac performance during high-altitude hypoxia.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Keywords hypoxia • echocardiography • ventricle mechanics

Introduction

High altitude-induced hypoxia represents a main physiological
stress and is often associated with acute mountain sickness
(AMS). The cardiovascular adaptations to hypoxia have been
widely assessed and it was well-established that left and right ven-
tricular (LV and RV, respectively) systolic functions were well-
preserved whereas the diastolic function of both ventricles was
generally impaired.1 Nevertheless, most of the studies used con-
ventional echocardiographic data2 that makes unfortunately diffi-
cult any conclusion regarding the alterations of regional
myocardial function.

Due to the unique arrangement of myofibres, cardiac form and
function are intrinsically linked as reflected in the cardiac mechanics
underpining ventricular function. During systole, cardiomyocytes
contraction induces LV and RV strains and also LV twist, which pro-
motes LV ejection fraction (EF).3 Systolic twist stores potential en-
ergy in elastic components which is released very early in diastole,
creating an intraventricular pressure gradient form base to apex that
facilitates early filling. The untwisting efficiency can be estimated
through the untwisting rate/peak twist ratio (i.e. the untwisting rate
for one degree of twist).4 Strains and twist can be assessed non-
invasively using speckle-tracking echocardiography (STE) giving a bet-
ter report on myocardial regional function and its underlying
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mechanisms. Recent studies reported LV mechanics during high-
altitude exposure (>5000 m) after several days of trekking.5,6

However, trekking implies confounding factors (i.e. physical activity,
acclimatization processes), making difficult strong conclusions regard-
ing the specific role of high-altitude hypoxia on myocardial function.
To our knowledges, only Dedobbeleer et al.7 recently reported LV
strains and torsion adaptation to high altitude using motorized trans-
port, but after 2 days of acclimatization at 3000 m.

The aim of the study was to provide a comprehensive assessment of
the impact of high-altitude hypoxia on regional myocardial function of
the LV and RV using STE.8 Whereas many studies explored response
to hypoxia after acclimation or during classic mountain acclimation
process, the participants involved in our study were transported with a
10-min helicopter flight from sea level to 4350 m. Since AMS occurs
generally within the first 6–36 h9 for visitors spending prolonged time
at high altitude, the processes of adaptation of the cardiovascular sys-
tem occurring during this initial period may well determine the individ-
ual’s ability to continue to function normally. Thus, we evaluated the
time course of the cardiac adaptations during 6 days from the first
hours after arrival. We hypothesized that (1) the drop in LV and RV
diastolic filling during high-altitude hypoxia is associated with alterations
of regional function including alteration in LV relaxation or untwisting
efficiency and (2) the efficient heart adaptation to high altitude involves
an increase in LV twist acting as a compensatory mechanism counter-
balancing the drop in LV diastolic function.

Methods

Study participants
Eleven males (age 28± 8 years) were included and examined at the
Grenoble University Hospital (altitude: 212 m). Individuals with pulmon-
ary and cardiovascular diseases such as cardiopathy, arteriopathy and ar-
terial hypertension were excluded. Subjects were usual recreational
climbers with no history of high-altitude pulmonary edema during previ-
ous high-altitude ascents and were not acclimatized to high altitude. All
participants provided written informed consent and the study was
approved by the local institutional Ethics Committee and performed ac-
cording to the Declaration of Helsinki (registration number: RCB2011-
A00071-40, ClinicalTrials.gov ID: NCT01565603).

Research design
All participants underwent helicopter transport to be dropped 10 min
later at 4350 m (Vallot scientific hut, Mont Blanc, Chamonix, France). They
stayed 6 days without further ascent and received no treatment to pre-
vent/treat AMS. All investigations were conducted at sea level (SLPRE),
3 ± 2 h after arrival at altitude (D0), day 2 (D2), day 4 (D4) and day 6
(D6) at 4350 m and 5 ± 2 h after return to sea level (SLPOST).

Clinical examination
Clinical examination included measurements of systolic and diastolic blood
pressure (BP) (Dinamap, GE Medical Systems Inc., Milwaukee, WI) in supine
position after 10 min of rest. Arterial oxygen saturation (SpO2) was measured
using finger-pulse oximetry (Biox 3740 Pulse Oximeter, Ohmeda, Louisville,
CO) after finger warming and signal stabilization (room temperature: 15–
20 �C). Subjects were also asked to complete self-reported questionnaires at
SLPRE, D2, D4 and D6 for AMS evaluation according to the Lake Louise
Score (LLS, five items).10 The presence of AMS was defined as LLS> 3.

Echocardiographic image acquisition
Images were obtained by a fully trained operator (GW) in the left lateral
decubitus position using a commercially available system (Vivid Q, GE
Healthcare, Horten, Norway) according to the recommendations.11,12

Two-dimensional greyscale harmonic images were obtained at 65–90
frames per second and colour tissue velocity at 120–140 frames per se-
cond. Images were saved digitally for subsequent off-line analysis
(EchoPac 6.0, GE Healthcare, Horten, Norway).

Two-dimensional and tissue Doppler

echocardiography
Standard parameters were assessed according to the recommenda-
tions.11,12 Tissue Doppler imaging (TDI) measures of LV myocardial
systolic (Sm), early diastolic (Em), and atrial (Am) velocities were as-
sessed at the mitral annulus level (mean of septal, lateral, inferior and
anterior walls). We assessed wall velocities (S’RV, E’RV and A’RV) at
the tricuspid annulus level on the free-wall. LV E wave/E’lateral ratio
was used as an index LV filling pressure.13 Systolic tricuspid regurgita-
tion (TR) gradient, a surrogate of systolic pulmonary artery pressure
(systolic PAP), was calculated with the modified Bernouilli equation
TR = 4�Vmax.

2

Speckle tracking echocardiography
STE analysis was conducted as previously described.14 RV longitudinal
strains were assessed on the free wall (three segments), from an apical 4-
chamber view. LV global longitudinal strain (GLS) was assessed from ap-
ical 2-, 3- and 4-chamber views. LV circumferential strain (CS), rotations
and twist were obtained from short-axis views according to specific rec-
ommendations.15 Strain data were processed with a specific toolbox
(Scilab 4.1, Consortium Scilab, INRIA-ENPC, Paris, France).14,16

Longitudinal strain rate in early diastole (SrLd) was used as an index of LV
relaxation.17 The good intra-observer reproducibility of strain analysis
(<8% for strains and rotations) has been reported in our laboratory.14

The percentage of untwist during isovolumic relaxation time (%UTIVRT)
was calculated as follows: %UTIVRT = (twist at aortic valve closure–twist
at the end of IVRT)/twist at aortic valve closure�100. The untwisting
rate/peak twist ratio was calculated as peak untwisting velocity normal-
ized for peak twist. The twist-to-shortening ratio (TSR), an index of sub-
endocardial dysfunction,18 was calculated as peak twist divided by CS
averaged from the basal and apical levels. The longitudinal strain delay
index (LSDI) was used to analyse LV mechanical synchrony.19 LSDI repre-
sents the sum of the wasted energy due to LV dyssynchrony across the
18 myocardial segments of the LV longitudinal strains from apical 2-, 3-
and 4-chamber views.

Statistical analysis
Data are expressed as mean ± SD. Analysis of the statistical significance
of temporal changes from SLPRE to D6 was performed using one-way
analysis of variance for repeated measurements (StatView SE program,
SAS Institute, Cary, NC). When a significant main effect was found, post
hoc analysis was performed with Bonferroni test for multiple compari-
sons, with sea level taken as the reference time. To analyse differences
at sea level from before to after altitude exposure, SLPRE and SLPOST

were compared with paired T-test. Correlations were performed using
pooled data from SLPRE and the four evaluations at altitude using linear
regression and Pearson’s coefficient. Statistical significance was declared
when P < 0.05.

2 C. Maufrais et al.
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Clinical characteristics of the subjects
At D0, SpO2 was reduced compared to SLPRE, then progressively
increased from D0 to D6 (Table 1). Systolic and mean BP progres-
sively increased at 4350 m. At SLPOST, SpO2 and BP were similar to
baseline data. LLS was increased at D2 and D4 compared to SLPRE

and returned closed to SLPRE values at D6.

RV diastolic and systolic function
Systolic PAP, RV gradient and pulmonary vascular resistance (PVR)
were increased at D0, then decreased from D2 to D6 and remained
higher than SLPRE at SLPOST. All parameters of RV morphological par-
ameters systolic function and free wall longitudinal strains were un-
altered at high altitude (Table 2). Tricuspid E/A was decreased during
the 6 days at 4350 m and returned to baseline values at SLPOST.
Tricuspid A wave was increased at D0 and was normalized at D2
whereas tricuspid E wave was decreased at high altitude but did not
reach statistical significance.

LV diastolic function
LV end-diastolic diameter (EDD) was decreased at D2 and D4 com-
pared to SLPRE (Figure 1). Peak E decreased at 4350 m but only from
D2. Peak A and Am increased from SLPRE to D0 and then decreased
from D0 to D6, but still remaining higher than SLPRE. Em and SrLd
were unaffected at high altitude (Table 3). Left atrial EDD was un-
altered at high altitude. The filling pressure index was decreased at
high altitude with the minimum value obtained at D2. We observed a
relationship between filling pressure index and both peak E (r = 0.72,
P < 0.001) and LV EDD (r = 0.37, P < 0.01). We observed a negative
correlation between peak E and PVR (r = 0.46, P < 0.001). Peak un-
twisting rate was greater at high altitude compared to SLPRE and we
observed a relationship between peak untwisting rate and peak twist
(r = 0.67, P < 0.001). Peak untwisting rate was delayed at high altitude
(time-to-peak (TTP) SLPRE vs. TTP D2, respectively: 119 ± 6% vs.
130 ± 9%, P < 0.05) and was normalized at SLPOST (Figure 2). %UTIVRT

was decreased from D0 to D6, but returned to normal values at
SLpost.

LV systolic function
LV EF and stroke volume (SV) were unchanged at 4350 m (Figure 3).
Heart rate (HR) and cardiac output (CO) were increased at D0 and

then remained higher than SLPRE even after return to sea level. At
high altitude, GLS, apical CS and basal CS were unchanged (Table 4).
Peak twist was increased at D0 and tended to become even greater
from D0 to D6. These changes were due to an increase in apical rota-
tion, since basal rotation did not change. TTP twist was unaltered at
4350 m. TSR was greater at D0 compared to SLPRE, remained stable
from D0 to D6 and returned to SLPRE values at SLPOST. We observed
a relationship between twist and SV (r = 0.44, P < 0.001) and between
SpO2 and TSR (r = 0.33, P < 0.05). LSDI was unchanged at high alti-
tude and at SLPOST compared to SLPRE.

Discussion

To our knowledge, this is the first study to follow-up the effect of high-
altitude hypoxia on heart function and mechanics during a 6-day period
and immediately after return to sea level in healthy young adults. Using
helicopter transport to avoid any confounding effect, we demonstrated
that prolonged altitude exposure (1) induced a transient LV diastolic
dysfunction associated with both a decrease in LV filling pressure and a
delayed LV untwisting, (2) did not affect the parameters of systolic
function of both the RV and LV, and (3) was associated with a progres-
sive increase in LV twist from sea level to D6.

Mechanisms underlying LV diastolic
function perturbations
It was well-described that, during the first hours in hypoxia, abnormal
LV filling pattern results only from an increase in left atrial contrac-
tion,20 whereas after several days of high-altitude trekking6 or in a
hypobaric chamber (e.g. Operation Everest III2), it results also from
an additional decrease in early filling. A recent study also reported a
decrease in early filling and an increase in atrial filling after 4-day as-
cent to 4350 m by motorized transport.7 In our study, after an initial
increase in atrial component after arrival at 4350 m (D0), LV early fill-
ing, LV filling pressure index and LVEDD progressively decreased and
were all at their lowest values at D2 and then plateaued until D6, sug-
gesting a transient impairment in LV diastolic function during sus-
tained hypoxic exposure. Interestingly, the lowest values of LV
diastolic function at D2 were concomitant with the most severe LLS,
suggesting that diastolic function impairment and symptoms of AMS
shared common underlying mechanisms.

Whereas the initial increase in atrial filling might be related to the
tachycardia induced by an activation of the sympathetic nervous

....................................................................................................................................................................................................................

Table 1 Subjects clinical characteristics at sea level (SLPRE), after arrival (D0), on day 2 (D2), day 4 (D4), day 6 (D6) at
high altitude and after return to sea level (SLPOST)

SLPRE D0 D2 D4 D6 ANOVA P value SLPOST vs. SLPRE P value

SpO2 (%) 97.9 ± 0.9 79.9 ± 3.3* 82.7 ± 3.0*† 84.5 ± 4.0*† 87.6 ± 2.2*†‡§ <0.001 97.8 ± 0.6 1.00

Systolic BP (mmHg) 120 ± 8 126 ± 10* 128 ± 8* 132 ± 8*† 135 ± 6*†‡ <0.001 119 ± 7 0.61

Diastolic BP (mmHg) 66 ± 9 65 ± 8 68 ± 11 72 ± 9 72 ± 10 0.17 70 ± 7 0.15

Mean BP (mmHg) 104 ± 6 107 ± 7 109 ± 7 114 ± 8*† 116 ± 7*†‡ <0.001 106 ± 7 0.51

Lake Louise Score (pts) 0.7 ± 0.8 – 3.5 ± 2.8* 2.5 ± 2.2* 1.1 ± 1.0‡§ <0.001 / /

Significant differences: *P < 0.05 vs. SLPRE;
†P < 0.05 vs. D0; ‡P < 0.05 vs. D2; §P < 0.05 vs. D4.

SpO2, arterial pulse oxygen saturation; BP, blood pressure.

Left ventricular mechanics in altitude 3
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Table 2 Right ventricular function and mechanics at sea level (SLPRE), after arrival (D0), on day 2 (D2), day 4 (D4),
day 6 (D6) at high altitude and after return to sea level (SLPOST)

SLPRE D0 D2 D4 D6 ANOVA

P value

SLPOST vs. SLPRE

P value

Conventional and Doppler data

Systolic PAP (mmHg) 19 ± 4 34 ± 8* 35 ± 6* 32 ± 3* 29 ± 4*†‡ <0.001 24 ± 5* 0.04

RV gradient (mmHg) 14 ± 2 22 ± 5* 23 ± 4* 21 ± 2* 19 ± 3*†‡ <0.001 19 ± 5* 0.04

PVR (mmHg min-1 l-1) 1.2 ± 0.7 3.1 ± 1.2* 3.6 ± 1.3* 3.0 ± 0.9* 2.5 ± 0.7*‡ <0.001 1.8 ± 0.6* 0.01

RV end-diastolic area (cm2) 19.6 ± 2.9 19.3 ± 1.9 19.5 ± 2.6 18.7 ± 2.8 18.1 ± 2.9 0.36 17.8 ± 2.1 0.14

RV end-systolic area (cm2) 11.0 ± 1.8 11.6 ± 1.5 11.6 ± 1.9 11.2 ± 1.0 10.3 ± 1.8 0.18 10.6 ± 1.6 0.63

RV FAC (%) 44 ± 4 39 ± 8 41 ± 5 40 ± 7 43 ± 4 0.06 42 ± 9 0.79

TAPSE (cm) 2.49 ± 0.33 2.46 ± 0.33 2.28 ± 0.20 2.36 ± 0.23 2.29 ± 0.19 0.13 2.31 ± 0.35 0.16

Tricuspid E wave (cm s-1) 59 ± 11 54 ± 9 51 ± 8 52 ± 8 53 ± 8 0.12 54 ± 6 0.20

Tricuspid A wave (cm s-1) 32 ± 7 39 ± 6* 34 ± 4† 35 ± 8† 34 ± 7† 0.02 31 ± 4 0.68

Tricuspid E/A 1.87 ± 0.30 1.41 ± 0.29* 1.53 ± 0.24* 1.51 ± 0.25* 1.58 ± 0.34* 0.0003 1.75 ± 0.26 0.26

Tissue Doppler imaging

E’RV (cm s-1) 14.6 ± 3.8 16.5 ± 4.2* 14.5 ± 3.3† 13.6 ± 2.9† 13.7 ± 3.0† 0.005 16.3 ± 3.4 0.22

A’RV (cm s-1) 9.6 ± 2.3 12.3 ± 3.1* 11.3 ± 3.1* 10.9 ± 2.1 10.5 ± 2.7† 0.03 8.4 ± 2.7 0.28

S’RV (cm s-1) 14.3 ± 1.9 14.6 ± 1.6 14.3 ± 1.8 14.7 ± 2.3 14.5 ± 2.1 0.96 13.3 ± 2.1 0.27

STE-derived parameters

Free wall longitudinal strain (%) -22.3 ± 9.2 -26.1 ± 5.1 -25.1 ± 5.2 -22.3 ± 6.1 -25.6 ± 3.5 0.25 -24.2 ± 5.8 0.39

Significant differences: *P < 0.05 vs. SLPRE;
†P < 0.05 vs. D0.

RV, right ventricle; PAP, pulmonary arterial pressure; PVR, pulmonary vascular resistance; FAC, fractional area change, TAPSE, tricuspid annular plane systolic excursion; STE,
speckle tracking echocardiography.

Figure 1 Kinetic of LV global diastolic function at sea level (SLPRE), after arrival (D0), on day 2 (D2), day 4 (D4), day 6 (D6) at high altitude and after
return to sea level (SLPOST). LV EDD, left ventricular end-diastolic diameter. Significant differences: *P < 0.05 vs. SLPRE;

†P < 0.05 vs. D0.

4 C. Maufrais et al.
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Table 3 Left ventricular diastolic function at sea level (SLPRE), after arrival (D0), on day 2 (D2), day 4 (D4), day 6 (D6)
at high altitude and after return to sea level (SLPOST)

SLPRE D0 D2 D4 D6 ANOVA

P value

SLPOST vs. SLPRE

P value

Conventional and Doppler data

Left atrial end-diastolic diameter (cm) 2.7 ± 0.3 2.6 ± 0.3 2.7 ± 0.2 2.8 ± 0.3 2.8 ± 0.3 0.38 2.7 ± 0.4 0.98

Mitral E/A ratio 1.86 ± 0.43 1.43 ± 0.33* 1.38 ± 0.16* 1.46 ± 0.29* 1.51 ± 0.38* <0.001 1.72 ± 0.54 0.49

IVRT (ms) 57 ± 17 57 ± 17 59 ± 19 55 ± 20 50 ± 12 0.71 63 ± 9* <0.001

IVRT (% of systolic duration) 116 ± 5 118 ± 5 119 ± 6 117 ± 5 116 ± 4 0.57 119 ± 3 0.09

Tissue Doppler imaging

Em (cm s-1) 14.5 ± 1.8 16.3 ± 1.8 16.3 ± 1.6 15.8 ± 2.5 15.9 ± 1.9 0.10 16.3 ± 1.8* 0.02

Am (cm s-1) 7.4 ± 1.2 10.1 ± 1.9* 9.1 ± 2.4*† 8.4 ± 1.7*† 8.4 ± 1.9*† <0.001 8.3 ± 1.8* 0.04

STE-derived parameters

Diastolic longitudinal strain rate (s-1) 1.3 ± 0.2 1.4 ± 0.2 1.4 ± 0.2 1.4 ± 0.2 1.4 ± 0.3 0.60 1.4 ± 0.2 0.38

Untwisting rate/peak twist ratio (s-1) -11.7 ± 6.6 -12.3 ± 5.1 -11.3 ± 3.2 -10.2 ± 4.5 -8.3 ± 2.4 0.15 -9.1 ± 4.5 0.11

Significant differences: *P < 0.05 vs. SLPRE;
†P < 0.05 vs. D0.

IVRT, isovolumic relaxation time; STE, speckle tracking echocardiography.

Figure 2 (A) Kinetic of LV untwisting parameters at sea level (SLPRE), after arrival (D0), on day 2 (D2), day 4 (D4), day 6 (D6) at high altitude and
after return to sea level (SLPOST). (B) LV twisting velocity during the cardiac cycle at SLPRE and D2. Significant differences: *P < 0.05 vs. SLPRE.

Left ventricular mechanics in altitude 5
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system (SNS),21 the drop in LV early filling at D2 remained under de-
bate. In our study, LV intrinsic relaxation seemed unaffected by hyp-
oxia since SrLd and Em remained unchanged from D0 to D6. In
contrast, LV filling pressures (estimated via the E/Em ratio) were
lower and significantly correlated with the drop in LV EDD (P < 0.01,

r = 0.37). The well-described hypovolemia-induced decrease in pre-
load and sympathetic hyperactivity at high altitude1,7 probably played
a major role in these alterations. Moreover, it is likely that the
increased PVR, and therefore RV afterload, directly impacted LV dia-
stolic function resulting in modified LV filling. It has been well-

Figure 3 Kinetic of LV global systolic function and LV mechanics at sea level (SLPRE), after arrival (D0), on day 2 (D2), day 4 (D4), day 6 (D6) at
high altitude and after return to sea level (SLPOST). Significant differences: *P < 0.05 vs. SLPRE.

6 C. Maufrais et al.
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Table 4 Left ventricular systolic function at sea level (SLPRE), after arrival (D0), on day 2 (D2), day 4 (D4), day 6 (D6)
at high altitude and after return to sea level (SLPOST)

SLPRE D0 D2 D4 D6 ANOVA

P value

SLPOST vs. SLPRE

P value

Conventional data

Left ventricular end-systolic diameter (cm) 3.3 ± 0.3 3.1 ± 0.2* 3.0 ± 0.3* 3.1 ± 0.4* 3.1 ± 0.3* 0.01 3.2 ± 0.4 0.57

Systemic vascular resistance (A.U.) 25.1 ± 2.7 22.2 ± 3.0 24.4 ± 6.1 25.8 ± 5.9 24.1 ± 4.6 0.21 22.1 ± 4.4* 0.04

Tissue Doppler imaging

Sm (cm s-1) 10.8 ± 1.7 13.1 ± 2.5* 12.3 ± 2.7* 12.8 ± 1.3* 12.6 ± 1.3* 0.006 12.0 ± 2.0 0.20

STE-derived parameters

Apical circumferential strain (%) -20.1 ± 5.4 -21.1 ± 4.0 -20.6 ± 8.2 -23.0 ± 7.0 -23.4 ± 5.6 0.27 -26.1 ± 7.3* <0.001

Basal circumferential strain (%) -16.6 ± 3.6 -16.0 ± 2.7 -15.9 ± 5.0 -17.4 ± 3.7 -16.7 ± 4.2 0.66 -17.8 ± 3.3 0.14

Apical rotation (deg) 6.2 ± 4.1 7.9 ± 5.0 8.5 ± 4.7* 8.9 ± 4.2* 9.7 ± 4.2* 0.01 9.1 ± 5.2* 0.008

Basal rotation (deg) -4.0 ± 1.7 -4.2 ± 2.0 -3.9 ± 2.0 -4.9 ± 1.7 -3.9 ± 2.0 0.60 -3.0 ± 1.9 0.17

Longitudinal strain delay index (%) -19.4 ± 8.4 -22.8 ± 16.1 -16.0 ± 5.7 -11.4 ± 6.0 -13.0 ± 7.2 0.09 -11.6 ± 4.1 0.11

Significant differences: *P < 0.05 vs. SLPRE.
STE, speckle tracking echocardiography.

Figure 4 Proposed mechanisms maintaining an efficient cardiac performance in response to high-altitude hypoxia. LV, left ventricular; SpO2, arter-
ial oxygen saturation; PASP, pulmonary artery systolic pressure; RV, right ventricular.

Left ventricular mechanics in altitude 7
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demonstrated that LV untwisting represented another important fac-
tor of early filling by creating an intraventricular pressure gradient.22

Our data indicated that peak untwisting rate was higher from D0 to
D4. This result is in accordance with the observations of
Dedobbeleer et al.7 after 4 days at high altitude. However, in the pre-
sent study, the untwisting rate/peak twist ratio remained unchanged
compared to sea level, meaning that the increase in LV untwisting
rate was mainly due to the higher LV twist. A better untwisting effi-
ciency and elastic recoil remain therefore controversial. Of note, LV
untwist must be also as early as possible to be efficient. In healthy
young subjects, LV untwisting is the first mechanical event in diastole,
�40% occurring during IVRT.4 Despite alterations did not reach stat-
istical difference, %UTIVRT progressively decreased, indicating that LV
untwisting was delayed with high-altitude hypoxia. Delayed LV un-
twisting has already been reported in various diseases23 and can be
used to diagnose patients with diastolic dysfunction.24 Hodt et al.25

recently described a delayed LV untwisting after 4 min of preload re-
duction induced by low body negative pressure. A decreased preload
could thus explain the delayed untwist observed at high altitude.

High-altitude exposure is associated with
an efficient cardiac performance
Many studies using hypoxic chamber26 or exposure to high altitude
during trekking27 indicated that indexes of global systolic function (i.e.
EF and SV) were unaffected by acute or prolonged hypoxia. In the
present study, despite significant arterial oxygen desaturation,
increased systolic PAP and symptoms of AMS at D2, we confirmed a
well maintained cardiac performance during 6 days at high altitude.
The increased CO was driven by a higher HR (Figure 2) probably
related to an activation of the SNS.28

Ventricular regional mechanics can reveal sub-clinical dysfunction
in patients with unchanged EF.23 Interestingly, from D0 to D6, LV
GLS and CS and RV longitudinal strain remained also unchanged.
Similar results were obtained regionally (i.e. at apical or basal levels,
data not presented). During a trek, Stembridge et al.29 reported a
decreased RV free wall longitudinal strains. Recent studies have con-
cluded that the RV is more affected by exercise than LV because of a
greater hemodynamic load and wall stress imposed on the RV during
intense exercise.30 Thus, the discrepancies between the normal RV
function observed in our study and the RV dysfunction reported after
trekking29 may be explained by physical activity as encountered in
trekking session.

The progressive increase in LV twist: a
compensatory mechanism to maintain
LV systolic function?
An important finding of our study was the progressive increase of LV
peak twist from the arrival at 4350 m to D6. Interestingly, LV peak
twist returned to baseline level immediately after descent to sea level,
further supporting that these alterations were driven by high-altitude
hypoxia. Recently, Stembridge et al.5 and Osculati et al.6 also
described an increased LV twist after several days of trekking at high
altitude, but trekking implied exercise stress, dehydration, diet, that
precluded any definitive conclusions regarding the specific effects of
hypoxia.

Several underlying mechanisms may explain the progressive in-
crease in LV twist with high-altitude hypoxia. High-altitude exposure
is associated with an increased catecholamine concentration,31 an ac-
tivation of the SNS28 and a decreased preload.5 The increase in LV
twist was likely mediated by a combination of these stimuli, as they
are known to increase apical rotation.32–34 Another mechanism that
could have increased LV twist is a decrease of subendocardial fibres
contractility. LV twist is mainly driven by the contraction of the sube-
picardial fibres, due to their higher lever arm, the subendocardial
layers acting only as a brake of LV twist. When subendocardial func-
tion is impaired, LV twist increases.16 Recent findings brought evi-
dences that subendocardial fibres were more affected by hypoxia
than subepicardial ones.6 In our study, the TSR, a marker of subendo-
cardial dysfunction18 was increased with high-altitude hypoxia.
Moreover, the significant relationship between SpO2 and TSR under-
lined a potential link between the subendocardial dysfunction and the
severity of hypoxia.

LV twist is a primary component of normal systolic function be-
cause for a similar myocardial contractility, it enhances the blood
ejection.3 As previously suggested,5 an increased LV twist helps to
preserve global LV EF despite the presence of subendocardial dys-
function. During severe hypoxia, it could be proposed as a compen-
satory mechanism to maintain EF despite the decrease in LV filling. Of
note, this greater LV twist at rest may impact its ability to increase
during effort (i.e. twist reserve), that could be one potential mechan-
ism responsible for the lower increase in SV during submaximal exer-
cise at high altitude.5 Figure 4 summarizes the potential mechanisms
responsible for the efficient LV performance observed at high alti-
tude, including the new findings observed in our study.

Conclusion

Based on an original approach using helicopter flight to transport the
subjects near the “top of Europe” to avoid the confounding effects of
exercise or acclimatization process, using cutting-edge echocardio-
graphic tools during 6 days at 4350 m, this study provides new in-
sights into the underlying mechanisms alteration in LV and RV
function. The strength of this article was to provide novel data re-
garding the adaptation of regional ventricular function and mechanics,
and especially LV twist, to high altitude. We confirmed the good tol-
erance of the heart to high-altitude hypoxia. However, the clinical
relevance of the present findings need to be confirmed in non-
recreational climbers and in patients with previous cardiovascular
conditions.
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